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The Material Theory of Object-Induction and the Universal Optimality of Meta-

Induction: Two Complementary Accounts

Gerhard Schurz and Paul Thorn

Abstract:

This paper brings together two accounts of induction that appear to be in opposition: 

John Norton's material account of induction (2003, 2010, manuscript) and Schurz' 

account of the universal optimality of meta-induction (2008b, 2017, 2019). 

According to the material account of induction, all reliable rules of 'induction' are 

local and context-dependent. Here 'induction' is understood in the sense of object-

induction, i.e., induction applied at the object-level of events. In contrast, Schurz' 

account proceeds from the demonstration that there are universally optimal rules of 

meta-induction, i.e., rules of induction applied at the level of competing methods of 

prediction, including methods of object-induction. The two accounts are not in 

opposition; on the contrary, they agree on most questions related to the problem of 

induction. Beyond this agreement the two accounts are complementary: the material 

account suffers from a justificational circularity or regress problem that the meta-

induction account can solve. On the other hand, the meta-inductive account abstracts 

from domain-specific aspects of object-induction that are supplied by the material 

account.

Keywords: object-induction, meta-induction, material account of induction, problem 

of circularity, universal optimality, no free lunch theorem 

1. Introduction

This paper brings together two accounts of induction that appear to be in opposition: 

John Norton's material account of induction (2003, 2010, manuscript) and Schurz' 

 

 

 

Journal Pre-proof



2 2

account of the universal optimality of meta-induction (2008b, 2017, 2019). 

According to the material account of induction, all reliable rules of 'induction' are 

local and context-dependent. Here 'induction' is understood in the sense of object-

induction, i.e., induction applied at the object-level of events. In contrast, Schurz' 

account proceeds from the demonstration that there are universally optimal rules of 

meta-induction, i.e., rules of induction applied at the level of competing methods of 

prediction, including methods of object-induction. The two accounts are not in 

opposition; on the contrary, they agree on most questions related to the problem of 

induction. 

First of all, the two accounts agree in their criticisms of various attempts of 

establishing universally valid rules of object-induction, ranging from the simple 

straight rule to contemporary Bayesian accounts to inference to the best explanation 

(Schurz 2019, ch. 3-5; Norton manuscript, ch. 4-12). Second, the two accounts agree 

in their diagnosis that David Hume was basically right that there is no generally 

reliable method of object-induction. Rather, the reliability of a method of object-

induction depends on the induction-friendliness of the domain to which it is applied 

(Norton manuscript, ch. 2, sec. 5), and every attempt to 'prove' a method's reliability 

without inductive uniformity assumptions ends in a circle or an infinite regress.

It is precisely for the preceding reason that the account of meta-induction does not 

strive for a universal reliability justification, but for a universal optimality 

justification. Optimality is an epistemologically weaker epistemic goal than 

reliability; thus again, a conflict between the two accounts does not arise. The crucial 

feature which makes optimality accounts feasible is that the optimality claim at the 

meta-level is not raised in regard to all 'possible' methods of prediction  following 

from results in computational learning theory (Kelly 1996), such a claim would be 

irredeemable  but rather to the finite set of all methods of prediction (or object-

induction) that are cognitively accessible to the given epistemic agent. Theorems in 

computational learning theory demonstrate that universal long-run optimality in 

regard to all accessible prediction methods can indeed be achieved by certain 'clever' 
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strategies of meta-induction. Thus meta-induction does indeed have an a priori 

justification. By itself this justification does not entail anything about the rationality 

of object-induction: it may well be that we live in a world in which methods other 

than object-induction  for example clairvoyance  are predictively superior. 

However, the a priori justification of meta-induction gives us, at least potentially, the 

following a posteriori justification of object-induction: to the extent that object-

inductive methods have been much more successful than all accessible non-inductive 

methods in the past, we are justified by meta-induction to continue favoring object-

inductive prediction methods in the future. This argument is no longer circular, 

because a non-circular justification of meta-induction has been established 

independently.  

In conclusion, the account of meta-induction arrives at the same diagnoses 

concerning methods of object-induction as the material account of (object-) 

induction: the reliability of methods of object-induction are inescapably domain-

specific and context-dependent. In the following sections, we work out more details 

of the potential synergy of the two accounts. We also argue that, over and above its 

attractive features, there is a deficiency in Norton's account of material induction that 

concerns its justification: the justification of material rules of induction is basically 

unsolved, and if we take this account literally it leads unavoidably into a circle or 

infinite regress. At this point, the optimality account of meta-induction can help, 

because it can terminate the regress in a way that the material account cannot.  

2. The Material Account of Induction

As mentioned in the introduction, we agree with Norton's critique of contemporary 

accounts that seek to establish the universal reliability of inductive rules or methods. 

For instance, we agree that so-called 'inference to the best explanation' (IBE) is not a 

uniquely defined method of inference, because "there is no clearly defined relation of 

explanation that confers special inductive support on some hypotheses or theories" 
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(Norton manuscript, ch. 9, contents). Moreover, the criteria for 'good' explanations 

are ambiguous and may be in mutual tension (for example, simplicity versus 

strength). As argued for in Schurz (2008a), abduction is best understood as a family 

of inference patterns that divide into rather separate kinds (for example, non-creative 

versus creative abductions) that bear at most a family resemblance to each other.

We also agree with Norton that "any particular inductive inference can fail reliably 

if we try it in a universe hostile to it. That the universe is hospitable to the inference is 

a contingent, factual matter" (ibid., ch. 2, contents). Most importantly, we agree that 

"while probabilistic analysis of inductive inference can be very successful in 

certain domains, it must fail as the universal logic of inductive inference. ... 

Proofs of the necessity of probabilistic accounts fail since they require 

assumptions as strong as the result they seek to establish" (ibid., ch. 10, contents).

Several formal results support Norton's arguments. One example is the no free lunch 

(NFL) theorem. Several versions of this theorem have been demonstrated in the area 

of machine learning (cf. Wolpert 1996). The version most important to the 

philosophical problem of induction is a generalization of a result of Carnap (1950, pp. 

564-566). The theorem is a consequence of the intuition that in the absence of 

knowledge, every possible world (event sequence) should have the same prior 

probability and can be expressed as follows (cf. Schurz 2017, theorems 4 and 5):

(1) No free lunch theorem: Let P be a uniform prior probability (density) distribution 

over the set of all infinite sequences of binary events (Carnap's measure c†). A non-

clairvoyant prediction method is any function assigning, to a sequence of past 

observations (e1,,en) (with ei{1,0}), a probability that the next event occurs, 

P(en+1=1). Then: The P-expected success of every non-clairvoyant prediction method 

is equal to the expected success of random guessing and of any other non-clairvoyant 

prediction method, namely 0.5.
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A distribution that is uniform over all possible worlds is called a state-uniform prior.  

(1) implies that a state-uniform prior makes all sorts of Bayesian long-run 

convergence results about posteriors impossible. These convergence results are 

central to subjective Bayesianism, since they establish a form of intersubjectivity, 

independently of the particular choice of prior distributions (Earman 1992, 141ff). 

However, these results presuppose that the prior distribution is continuous (and thus 

non-dogmatic) over the possible values the frequency limits, while a state-uniform 

distribution is provably non-continuous, but assigns a probability of 1 to the class of 

sequences with limiting frequency of 1/2 (Schurz 2017, theorem 5).  

These and other results (cf. Schurz 2019, ch. 4) demonstrate, in support of 

Norton's position, that all probabilistic methods of induction presuppose that the 

assumed prior distribution satisfies certain principles of inductive uniformity. In 

reaction to this situation, Norton develops his material account of induction. It starts 

with the diagnosis that the reliability of any inductive method depends on the 

contingent uniformity properties of the domain to which induction is applied. Norton 

calls these uniformity properties "facts", but as we shall see soon, these facts of 

uniformity are general facts stretching into the indefinite future. 

The argument that the reliability of inductive inferences relies on a certain fact, 

namely on the uniformity of nature, has prominently been proposed by John Stuart 

Mill (1865, III.3.1) and later by Russell (1912). However, in the writings of Mill and 

Russell, induction was conceived of as a general method, being justified by the 

universal fact of nature's uniformity. In contrast, Norton's uniformity account is 

decidedly local, dependent on the domain of application. According to Norton (2003, 

p. 649), inductive reasoning is not governed by formal and general rules, such as

(2) Some observed As are Bs; therefore all As are Bs, 

but rather by local material inferences, such as 
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(3) Some samples of bismuth melt at 271oC; therefore all samples of bismuth melt at 

271oC.  

Norton compares the material induction (3) with the analogous induction for a sample 

of wax: "Some samples of wax melt at 91oC; therefore all of them do". In the latter 

case, we 'know' (according to Norton) that wax is not a chemical element or a definite 

chemical compound, but rather a mixture of different compounds with variable 

melting points. In contrast, bismuth is a chemical element, and we 'know' the 

following chemical uniformity-fact (ibid,. p. 650): 

(4) Samples of the same element agree in their physical and chemical properties.

According to Norton, the reliability of induction over chemical elements is justified 

by fact (4). At this point, two clarifications are important.  

First, we take it that Norton does not assume an externalist account of justification, 

according to which 'the mere fact of uniformity', independently of whether we will 

ever know this, justifies the inductive inference (3). In past work, Schurz criticized 

externalist accounts of justification, arguing that external 'justifications' that are 

cognitively inaccessible to human beings are of no practical significance (Schurz 

2018, sec. 3.2). We do not want to discuss this topic here, but we assume that Norton 

understands justification in an internalist sense, implying that one must somehow be 

able to provide evidence and arguments for one’s belief in local uniformity claims of 

the type exemplified by (4). 

Second, (4) is obviously not a fact that can be observed, but a general fact that 

stretches into the indefinite future. All that we can know by pure observational 

knowledge is that so far all observed samples of the same chemical elements have 

agreed in their observed properties. Whether this will continue to hold in the 

indefinite future, or for properties that until now have not been observed, is a 

 

 

 

Journal Pre-proof



7 7

conjecture. 

It is presumably true, as Norton asserts, that more or less all object-inductions in 

science are dependent on background uniformity assumptions that are assumed in 

some domains but not in others. For example, if for six days the Dow Jones index 

goes up or stays high, then no reasonable person would inductively infer that the Dow 

Jones will continue to go up forever or to stay high forever, because we 'know' by 

experience that the stock market is not uniform in this sense. So far so good. There is, 

however, an obvious challenge to Norton's approach  the Humean challenge: how 

can we know these facts of uniformity that stretch into the indefinite future? Without 

presupposing general scientific background 'knowledge', (4) could be false in many 

ways, not only in fanciful philosophical ways, but even in plausible ways. For 

instance, why should substances not slowly change their melting points with the 

evolution of our solar system? Stones and minerals have several properties that 

slowly change, for example, their isotope ratio; why not their melting points? How do 

we know that this is not the case? The answer is obvious: the only way to know this 

is by way of an inductive inference, in which we reason from past experience to the 

indefinite future. 

In conclusion, the fundamental objection to the uniformity justification of 

induction is that it leads to a circle or an infinite regress, since the general uniformity 

facts that license inductive inferences must themselves be justified by inductive 

inferences, which in turn must be justified by other facts of uniformity, and so on. A 

similar circularity or regress objection has been directed against John Stuart Mill's 

uniformity account induction. Norton acknowledges this problem; however, he 

argues that the regress problem is only unsolvable for the formal (or general) account 

of induction, while for the material (or local) account the regress is neither 

demonstrably infinite nor demonstrably harmful (Norton 2003, sec. 6). We must 

admit that this is the part of Norton's account that we find least convincing. First of 

all, if the justification of every local induction depends on a uniformity-fact, and the 

justification of every uniformity-fact requires a material induction, then this is a 
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'perfect' situation for a circularity or an infinite regress, and we cannot see why this 

problem should be 'a jot' less severe for a material than for a formal account of 

induction. We are not alone in this view; for similar arguments cf. Kelly (2010) and 

Worrall (2010). 

Moreover, a closer look at Norton's account shows that his claim that all 

uniformity assumptions are equally local is not tenable. The reason for this is that the 

uniformity assumptions that justify material inductive inferences become 

unavoidably more and more general. For example, the above inference (3) is justified 

by the uniformity assumption (4) "Samples of the same element agree in their 

physical properties". The inductive inference that justifies the uniformity-fact (4) is 

the following:

(5) So far all observed samples of the same element agreed in their physical 

properties. Therefore this is generally so. 

Now, the inductive uniformity that justifies the reliability of (5) is already entirely 

domain-unspecific and, thus, general. We propose to express this as the following 

principle of spatio-temporal invariance:

(6) Physically identical entities that differ only in their location in space and time 

behave in an identical way. 

Of course, principle (6) could be expressed in different ways, but the point is that this 

principle is domain-unspecific, global and general. The inductive inference that 

justifies the uniformity-fact (6) would be

(7) So far physically identical entities differing only in their location in space and 

time behaved in an identical way. Therefore this is generally so. 
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The uniformity-fact that justifies (7) would again be (6); thus Norton's regress 

terminates after a few steps in a perfect circle. 

A similar analysis applies to Norton's case study of induction over the 

crystallographic structure of crystalline substances (manuscript, ch. 1; more about 

this case study is said in sec. 4). According to Norton, Marie Curie inductively 

inferred that all crystals bariumbromide and radiumbromide are crystallographically 

isomorphic, because "Curie already knew of the closeness of the chemical properties 

of barium and radium" (ibid., ch. 1, p. 23). Norton argues that Curie's knowledge of 

this general fact justified her inductive inference, but of course the general fact can 

itself only be justified by an inductive inference of the form "So far all samples of 

crystalline substances agreeing in their chemical properties belong to the same 

crystallographic system; therefore this is generally so". And obviously, this latter 

inductive inference can only be warranted by a fact of the highest generality level, 

namely fact (6), which terminates Norton's regress.

Norton appears to appreciate these difficulties. As a kind of side step, he offers 

another argument to overcome the circularity problem, the argument of the theory-

ladenness of observation. Norton argues that even observation reports about the past, 

articulated in terms of qualitative properties, involve inductive assumptions (Norton 

2003, e.g., p. 668, fn. 9). According to Norton, the singular observation sentence 

"This ball is red" involves the universal proposition "This ball has the same color as 

all balls in an infinite class of balls". We do not assume that Norton really wants to 

assert with his claim that when we report an observation such as "yesterday it was 

raining" we implicitly predict something about the weather in the future. Thus, in a 

sense, this point seems to be more a stopgap than a strong argument. Moreover, from 

a strict semantic viewpoint, the argument is unconvincing. The observation statement 

"This object is red" does not imply that this object has the same color as infinitely 

many other objects, but only that this object is perceived to have a certain memorized 

color-quality that is similar to the color of various other objects observed in the past. 
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This is merely a report about a present experience and its relation to finitely many 

past experiences, but not an inductive generalization.  

In conclusion, the gap in Norton's account is the problem of how facts of 

uniformity can be inductively justified without entering a vicious circle. This is the 

point where the account of meta-induction offers help, and is the topic of the next 

section.

3. A Priori Justification of Meta-Induction: Universal Optimality

 

In other papers (cf. Schurz 2008b, 2009), Schurz developed a new type of higher 

order justification for inductive inferences that he calls an optimality justification. 

Optimality justifications do not attempt to 'prove' that a cognitive method (here 

induction) is reliable  something that, by Hume's arguments, cannot be done  but, 

rather, that it is optimal, i.e., that it is the best that we can do in order to achieve our 

epistemic goal, which in the case of induction is predictive success.   

Reichenbach (1949, sec. 91) was the first philosopher who suggested something 

like an optimality account: he attempted to demonstrate that induction is the best that 

we can do for the purpose of predictive success. Reichenbach's attempt failed, 

because  as pointed out by Skyrms (1975, ch. III.4)  nothing in Reichenbach's best 

alternative account can exclude the possibility of a clairvoyant that is better in 

predicting random sequences than an empirical inductivist. More generally, results in 

formal learning theory show that no prediction method can be universally optimal at 

the object level, that is, optimal at the task of predicting events in all possible worlds 

(Kelly 1996, p. 263). In contrast, Schurz' account is focused on the concept of meta-

induction, i.e., induction applied at the meta-level to a finite set of competing 

prediction methods.   

Meta-induction tracks the success rate of all prediction methods whose predictions 

are accessible and predicts a weighted average of the predictions of those methods 

that were most successful so far. What Schurz' account attempts to show is that there 
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is a meta-inductive strategy that is predictively optimal among all prediction methods 

that are (simultaneously) accessible to the epistemic agent. Since the restriction to 

accessible methods is crucial for the optimality theorem, Schurz and Thorn (2016) 

call this kind of optimality access-optimality. Remarkably, the access-optimality of 

meta-induction holds in all possible worlds, even in radically 'non-uniform' worlds or 

in 'paranormal' worlds that host perfect clairvoyants. 

Technically the account of meta-induction is based on the notion of a prediction 

game:

 

(8) A prediction game is a pair ((e),) consisting of:

(1.) An infinite sequence (e) := (e1, e2,) of events en[0,1] coded by real 

numbers ranging between 0 and 1, possibly rounded according to a finite accuracy. 

For example, (e) may be a sequence of daily weather conditions, football game 

results or stock values. Each time n corresponds to one round of the game.   

(2.) A finite set of prediction methods or 'players'  = {P1,,Pm,MI}. In what 

follows we identify 'methods' with 'players'. In each round, it is the task of each 

player to predict the next event of the event sequence. 'MI' signifies the meta-

inductivist, and the other players are the 'non-MI players' or 'candidate methods'. 

They may be real-life experts, virtual players implemented by computational 

algorithms, or even 'clairvoyants' who can see the future in 'para-normal' possible 

worlds. It is assumed that the predictions of the non-MI players are accessible to the 

meta-inductivist.  

Each prediction game constitutes a possible world, or in cognitive science 

terminology a possible environment. Apart from the above definition, we make no 

further assumptions about these possible worlds. The sequence of events (e) can be 

arbitrary: a deterministic sequence, a random sequence or Markov chain, or a 'chaotic' 

sequence whose finite frequencies don't converge to limits. We also do not assume a 

fixed list of players  the list of players may vary from world to world, except that it 
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always contains MI, and some fallback strategy of MI in situations in which there are 

no other accessible players. The only restriction concerning the set of non-MI players 

is that it is finite; this restriction will be discussed and relaxed at the end of this 

section. 

The predictive success rate of a method P is defined by means of the following 

chain of definitions:

 predn(P) is the prediction of player P for time n which is delivered at time n1 (like 

the events, predictions are coded by real numbers between 0 and 1).

 The deviation of the prediction predn from the event en is measured by a normalized 

loss function loss(predn,en) ranging between 0 and 1.

 The natural loss-function is defined as the absolute (linear) distance between 

prediction and event, |predn  en|; however, results concerning the access-optimality 

of meta-induction apply for a much larger class of loss functions (see below).

 score(predn,en)  =def 1 loss(predn,en) is the score obtained by prediction predn of 

event en (ranging between 0 and 1).

 absn(P) =def 1in score(predi(P),ei) is the absolute success achieved by player P 

until time n (ranging between 0 and n).

 sucn(P) =def absn(P)/n is the success rate of player P at time n (ranging between 0 

and 1). 

The optimality theorem (10) below holds for all convex loss functions, which means 

that the loss of a weighted average of two predictions is not greater than the weighted 

average of the losses of two predictions. Convex loss functions comprise a large 

variety of loss functions including all linear, polynomial, and exponential functions of 

the natural loss function. The variants of the optimality theorem (10) in terms of 

expected or average success hold for all possible loss functions.  

The simplest meta-inductive strategy is called Imitate-the-best, which predicts 

what the presently best non-MI player predicts. It is easy to see that this meta-
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inductive strategy is not universally access-optimal: its success rate breaks down 

when it plays against non-MI methods that are deceivers, which means that they 

lower their success rate as soon as their predictions are imitated by the meta-

inductivist (cf. Schurz 2008b, sec. 4). A realistic example is the prediction of stock 

values in a 'bubble economy': Here the prediction that a given stock will yield a high 

rate of return leads many investors to put their money on this stock and by doing so 

they cause it to crash. 

Nevertheless there is a meta-inductive strategy that is provably universally 

optimal. This strategy is called attractivity-weighted meta-induction; it predicts a 

weighted average of the predictions of the non-MI players, using their so-called 

'attractivities' as weights. Attractivities of non-MI players are always monotonically 

increasing functions of their success difference compared to that of MI. From the 

viewpoint of MI, this attractivity is called regret, and attractivity-based meta-

induction is a variant of regret-based learning. The most efficient definitions in terms 

of MI's worst case regret are exponential attractivities defined as follows (cf. Cesa-

Bianchi and Lugosi 2006, pp. 16f): 

(9) Predictions of eMI (short for exponential attractivity-weighted meta-induction):

predn+1(eMI) =def   , where





 

mi1

mi1

)(Pat
)(Ppred)(Pat

in

i1nin

 atn(Pi) is the attractivity of a player Pi for eMI at time n, defined as 

atn(Pi) =def  eabsn(P)), with   .)1ln(m)/(n8 

 

Because the attractivities of non-MI players are exponential functions of their 

absolute successes, non-MI players having a lower relative success rate than eMI are 

gradually forgotten by eMI, because they achieve an exponentially smaller weight 

than those non-MI players whose success rate is comparable to that of eMI. This 

'forgetting feature' is a necessary condition for eMI's access-optimality; it guarantees 

that eMI's success approximates the success rate of the best non-MI player, even if 
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the best non-MI player is permanently changing. Let 'maxsucn' denote the non-MI-

players' maximal success rate at time n. Then the following universal optimality 

theorem for eMI has been proved:1 

(10) Theorem: (universal access-optimality of eMI):

For every prediction game ((e){P1,,Pm,eMI}) with a convex loss function:

(i) maxsucn  sucn(eMI)  1.78 ln(m)/n

(ii) eMI is long-run access-optimal: limsupn (maxsucn  sucn(eMI))  0.

According to theorem (10)(ii), attractivity-weighted meta-induction is long-run 

optimal for all possible event sequences and finite sets of (simultaneously accessible) 

prediction methods. In the short run, attractivity-weighted meta-induction may suffer 

from a possible loss, compared to the leading player. This possible loss derives from 

the fact that eMI must base her prediction of the next event on the past success rates 

of the candidate methods, and the hitherto most attractive methods may perform 

badly in the prediction of the next event. Fortunately theorem (10)(i) states a worst-

case upper bound for this loss, which is small if the number of competing methods 

(m) is not too large compared to the number of rounds (n), and converges to zero 

when n grows large.  

In conclusion, theorem 10 and its variants establish the following a priori 

justification of meta-induction:

(11) A priori justification of meta-induction: In all possible worlds, it is reasonable 

for an epistemic subject X to apply the strategy eMI to all prediction methods 

accessible to X, since this can only improve but not worsen X's success in the long 

1 Proof: See Schurz (2019), appendix 12.24, based on theorem 2.2+3 of Cesa.-Bianchi and Lugosi 
2006; see also theorem 21.11 in Shalev-Shwartz and Ben-David 2014, pp. 253f. There the 
tighter worst case bound of + is proved, which implies the bound of ln(m)/n2  2n8ln(m)/ 
(10). 
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run. 

The justification of meta-induction given by (11) is a priori and analytic, since it does 

not rely upon any assumptions about contingent facts. Moreover, the justification is 

non-circular, because it does not rest on any inductive inference or assumption of 

inductive uniformity. Note that claim (11) should not be misunderstood as entailing 

that the application of eMI in isolation is the best epistemic strategy. Rather, it 

implies that eMI is optimal relative to the given set of accessible candidate methods. 

Besides this, it is always reasonable in addition to try to improve one's candidate set. 

But this does not constitute an objection against the universal recommendation of 

applying eMI on top of one's candidate set.   

Theorem (10) proves the optimality, but not the dominance of attractivity-based 

meta-induction. As it turns out, there are other meta-inductive methods, different 

from eMI, that are also access-optimal. However, under most conditions, the 

exponential version eMI has the best short-run performance (cf. Cesa-Bianchi and 

Lugosi 2006; Schurz 2019, ch. 6+7; Thorn and Schurz 2019).  

An important restriction of theorem (10) is the assumption that the number of 

competing prediction methods is finite. This restriction is a necessary condition for 

the proof of the universal access-optimality of meta-induction (without it only weaker 

results are provable). In Schurz (2008b; 2019, sec. 9.2.3) the finiteness restriction is 

justified by the following fact:

 

(12) Fact of cognitive finiteness: Real epistemic agents are finite beings who can 

simultaneously access (and compare) only finitely many methods of finite 

complexity. Therefore the optimality justification of meta-induction is not impaired 

by the finiteness restriction. 

Although the argument from cognitive finiteness is rather strong, it is not the only 

answer to the 'challenge of infinitely many methods'. An important extension of 

 

 

 

Journal Pre-proof



16 16

meta-induction for cognitively finite beings concerns prediction games with finite but 

unboundedly growing numbers of prediction methods. Relevant to this situation, 

there is a beautiful extension of theorem 10 to games with unboundedly growing 

numbers players, which holds provided the number of players grows more slowly 

than an exponential function of the number of rounds (Schurz 2019, sec. 7.3, theorem 

7.3). 

In conclusion, the optimality justification of meta-induction provides us with a 

tenable solution to Hume's problem of induction. The core of this solution consists in 

the fact that meta-induction has an indefeasible learning ability: whenever the 

strategy is confronted with a so far better method, it will learn from it and reproduce 

its success. This is what makes it optimal  not among all possible methods, but 

among all accessible prediction methods.

 

4. A Posteriori Justification of Object-Induction: In Support of the Material Theory

What does theorem 10 and its variants imply for the rationality of object-induction? 

Without further assumptions nothing, since it is logically as well as metaphysically 

possible that we live in a world that hosts persons with 'super-natural' abilities  

clairvoyants, God-guided fortune tellers or whatever  whose predictive success 

outperforms the success of ordinary empirical scientists. Of course, the optimality of 

eMI is not affected by this possibility: in these worlds, meta-inductivists would favor 

not the predictions of the scientists but those of the clairvoyants.  

Nevertheless, conditional on past success rates, the optimality of meta-induction 

provides us with an a posteriori justification of object-induction, based on the 

following idea: 

(13) As a matter of contingent fact, object-inductive prediction methods were so far 

much more successful than all accessible non-inductive (object-level) prediction 

methods. Therefore, it is justified, by meta-induction, to continue favoring object-
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inductive prediction methods in the future. 

Argument (13) is no longer circular, because a non-circular justification of meta-

induction has been established independently. Argument (13) presupposes a 

contingent premise about the past success rates of inductive compared to non-

inductive prediction methods. Although this premise seems to be plausible, a closer 

look makes clear that the premise needs refinement. Two complications must be 

considered.

First, 'object-induction' is not just one method, but an unboundedly large family of 

 simple or increasingly refined  methods applied at the level of observed events. 

Many scientific debates concern the question of which inductive method (e.g., TTB 

heuristics, multilinear regression, simple or full Bayes estimation) is most appropriate 

for which domain. It is easy to see that different inductive methods, if applied to the 

same event sequence, may produce mutually inconsistent predictions. As an example, 

consider the binary event sequence (0011100111) and two binary prediction methods: 

M1 always predicts the rounding of the so-far observed frequency to 1 or 0 (the so-

called 'maximum rule' of prediction). In contrast, M2 predicts repetitive patterns, in 

our example the repetitive pattern 00111. Thus while M1 predicts e11 =1, M2 predicts 

e11 = 0 (for a similar example cf. Norton manuscript, ch. 2, sec. 6). In a situation of 

this sort, the application of meta-induction to the competing inductive prediction 

methods is the recommended choice, as it is guaranteed to select an optimal 

combination of the methods. Of course, sometimes the result of a meta-inductive 

combination of methods may lead to the conclusion that the odds are equal and one 

should simply remain agnostic.  

Second, there are several domains in which object-inductive prediction methods 

are not more successful than random guessing, because of the chaotic dynamics or 

the chance-driven nature of the events in these domains. 

In conclusion, our thesis that object-induction was so far predictively more 

successful than non-inductive methods should be explicated as follows:
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(14) Contingent premise of the a posteriori justification of object-induction: Until the 

present time and according to the presently available evidence, object-inductive 

methods dominated non-inductive methods in the following sense: In many fields 

some object-inductive method was significantly more successful than every non-

inductive method, though in no field was a non-inductive method significantly more 

successful than all object-inductive methods.  

It should be kept in mind that the justification of object-induction based on premise 

(14) is always relative to the present time and available evidence. As already 

discussed in section 2, there are many domains in which the superiority of object-

inductive prediction methods is not obvious. This latter point brings us back to 

Norton's material account of object-induction. It is only in domains that are regulated 

by strong uniformities that the superiority of object-inductive methods over non-

inductive methods of prediction will be strong enough that it can convince even 

skeptical persons. The strength of Norton's material account of object-induction lies 

in the fact of illuminating the detailed structure of these local uniformities make the 

success of inductions in science possible. An example of this sort was already 

presented in sec. 2: the bismuth example of Norton (2003). Here the local uniformity 

is expressed as the strict (exceptionless) generality (4): All samples of the same 

element agree in their physical and chemical properties. However, as Norton 

emphasizes, in most cases the general facts are merely statistical generalization that 

may have exception. An example is Norton's case study of the crystallographic 

structures of minerals (manuscript, ch. 1). Inductions generalizing the 

crystallographic structures of samples (e.g., cubic, octahedral, etc.) have the form

(15) This sample of salt A belongs to crystallographic system B, therefore all samples 

to salt A belong to crystallographic system B (ibid., 7).
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According to the simple strict analyses, the reliability of these inductions is based on 

the general fact-hypothesis

(16) Each crystalline substance has a single crystallographic form B (Haüy's 

principle, cf. ibid., p. 19).

However, this fact-hypothesis is false, because there are exceptions: some crystalline 

m may possess several different crystallographic forms. Norton concludes that the 

uniformity fact behind inductions over crystallographic systems substances is merely 

weak generality which he expresses as follows (ibid., p. 21):

(17) Generally each crystalline substance has a single characteristic crystallographic 

form.

Generalizations of this form are called normic generalizations in the literature, 

because they express normal-case hypotheses that have exceptions (cf. Schurz 2001); 

another strategy of expressing these weak generalizations in the literature is by means 

of ceteris paribus laws (Reutlinger et al. 2010, Schurz 2002). Compared to strictly 

general facts, weakly general facts imply two changes in the formal nature of the 

induction that are licensed by them. First, the reliability of these inductions is now no 

longer strict but merely probabilistic, which makes probabilistic considerations more 

important than it seems according to Norton's discussions of Bayesianism. Second, 

the inductive inference becomes defeasible by exceptional evidence, which now has 

to be explicitly excluded in the premises. Therefore the proper formal structure of  

inductive inferences can now no longer have the simple form that Norton attributes to 

them in (2003) and (manuscript, ch. 1):

(2) Some observed As are Bs; therefore all As are Bs.
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Rather, the extent of the observed exceptions must now be made explicit in the 

premises, in one of the two following forms: 

(2') All observed As are Bs (i.e., so far no counterexamples have been observed); 

therefore all As are Bs,

or

(2'') r percent of the observed As are Bs (i.e., so far 1-r% counterexamples have been 

observed); therefore approximately r% of all As are Bs.

As these considerations make clear, not only the reliability but also the formal 

structure of local inductions depends on the nature of the local uniformity facts 

licensing them (in fact, much more complicated forms of object-induction are 

possible and suited for specific environments; cf. Schurz 2019, ch. 5, ch. 5, sec. 

8.3.2). 

5. Conclusion

The two accounts of induction have been brought together: John Norton's material 

account of induction (2003, 2010, manuscript) and Schurz' account of the universal 

optimality of meta-induction (2008b, 2017, 2019). According to the first account, all 

reliable rules of object-induction are local and context-dependent. According to the 

second account, there are universally optimal rules of meta-induction. The two 

accounts are not in opposition but complementary. The material account suffers from 

a justificational circularity or regress problem that the meta-induction account can 

solve. On the other hand, the meta-induction account abstracts from domain-specific 

aspects of object-induction that are supplied by the material account.

 

 

 

Journal Pre-proof



21 21

References

Carnap, R. (1950). Logical foundations of probability. Chicago: Univ. of Chicago 
Press. 

Cesa-Bianchi, N., and Lugosi, G. (2006). Prediction, learning, and games. 
Cambridge:  Cambridge Univ. Press.

Earman, J. (1992). Bayes or bust? Cambridge/Mass.: MIT Press.
Kelly, T (2010). Hume, Norton, and induction without rules. Philosophy of Science 

77, 754-764.
Mill, J. St. (1865). System of logic. London: Longmans, Green & Co.
Norton, J. (2003). A material theory of induction. Philosophy of Science 70, 647-670.
Norton, J. (2010). There are no universal rules for induction. Philosophy of Science 

77, 765-777.
Norton, J. (manuscript). The material theory of induction.

https://www.pitt.edu/~jdnorton/papers/material_theory/material.html
Reichenbach, H. (1949). The theory of probability, Berkeley: University of California 

Press.
Reutlinger, A., Schurz, G., and Hüttemann, A. (2011). Ceteris paribus laws. In 

Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Spring 2019 
Edition), http://plato.stanford.edu/entries/ceteris-paribus.

Russell, Bertrand. (1912). The problem of induction. In B. Russell, The problems of 
philosophy, 1959 (ch. 6).Oxford:  Oxford Univ. Press.

Schurz, G. (2001). What is 'normal'? An evolution-theoretic foundation of normic 
laws and their relation to statistical normality. Philosophy of Science 28, 476-97.

Schurz, G. (2002). Ceteris paribus laws: classification and deconstruction. In Earman, 
J., Glymour, C. and Mitchell, S. (eds.), Ceteris paribus laws, Erkenntnis 57/3 
(special issue), 351-372.

Schurz, G. (2008a). Patterns of abduction. Synthese 164, 201-234.
Schurz, G. 2008b. The meta-inductivist's winning strategy in the prediction game: a 

new approach to Hume's problem. Philosophy of Science 75, 278-305.
Schurz, G. (2017) No free lunch theorem, inductive skepticism, and the optimality of 

meta-induction. Philosophy of Science 84, 825-839.
Schurz, G. (2018). Optimality justifications: new foundations for foundation-oriented 

epistemology. Synthese 195, 3877-3897.
Schurz, G. (2019). Hume's problem solved: the optimality of meta-induction. 

Cambridge/Mass.: MIT Press.
Schurz, G., and Thorn, P. (2016). The revenge of ecological rationality: strategy-

selection by meta-Induction within changing environments.  Minds and Machines 

 

 

 

Journal Pre-proof



22 22

26(1), 31-59.
Shalev-Shwartz, S. and S. Ben-David. (2014. Understanding machine learning. From 

theory to algorithms. New York: Cambridge University Press.
Skyrms, B. (1975). Choice and chance. Encinco:  Dickenson (4th ed. Wadsworth 

2000).
Thorn, P., and Schurz, G. 2019. Meta-inductive prediction based on attractivity 

weighting: an empirical performance evaluation. Journal of Mathematical 
Psychology 89, 13–30.

Wolpert, D. H. (1996). The lack of a priori distinctions between learning algorithms. 
Neural Computation 8/7, 1341-1390.

Worrall, J. (2010). For universal rules, against induction. Philosophy of Science 77, 
740-753.

 

 

 

Journal Pre-proof



1 1

Title:

The Material Theory of Object-Induction and the Universal Optimality of Meta-Induction: Two 

Complementary Accounts

Highlights:  

 This paper brings together two accounts of induction that appear to be in opposition: John 

Norton's material account of induction and Schurz' account of the universal optimality of 

meta-induction  

 Norton's material account is about object-induction (induction applied at the level of events). 

Norton argues that all reliable rules of object-induction are local and context-dependent. In 

contrast, Schurz' account is about meta-induction (induction applied at the level of 

prediction methods). Schurz demonstrates that there are universally optimal rules of meta-

induction. 

 The two accounts are not in opposition but agree on most questions related to the problem of 

induction. Beyond this agreement the two accounts are complementary: The material 

account suffers from a justificational regress problem that the meta-induction account can 

solve. On the other hand, the meta-inductive account abstracts from domain-specific aspects 

of object-induction that are supplied by the material account.
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